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Edge detection and segmentation of signal/image are important operations in the general fields of image processing and 

computer vision. Here, we present a stochastic FitzHugh-Nagumo mechanism which utilizes activation-excursion 

process and show how it can be used to address various problems in noisy environment, including edge detection and 

signal/image segmentation. The stochastic nature of our method makes it robust against noise, especially for handling 

poor contrast and highly noise polluted signal/image. We demonstrate the superiority of our method against the recently 

published deterministic FHN and some conventional methods on a few synthetic and real signals/images. 
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Introduction  

The response of dynamical systems to noise has 

long been an active field of study, mostly driven by its 

enormous relevance in numerous applications in 

engineering, physics, biology, and medicine [1, 2]. Often, 

noise is an undesirable element of the dynamical system 

and considerable previous work has focused on 

techniques that can suppress its effects in real 

applications. However, not all noise is bad; indeed, 

sometimes the system ‘‘tunes’’ itself to achieve optimal 

response as a function of a given noise floor. 

This has led to extensive investigations of 

noise-mediated cooperative behavior, e.g., stochastic 

resonance [3], and noise-enhanced propagation, as well 

as more rigorous investigations into the behavior of 

bifurcating dynamical systems in the presence of noise 

[4].  In this paper, we investigate the effect of noise and 

periodic signal driving in the FitzHugh-Nagumo model 

(FHN) then we call it stochastic FHN which has become 

a popular representation of dynamical systems for 

several reasons. First, its relative simple structure 

sometimes allows one to make analytical progress. 

Second, by varying the parameters, the FHN admits a 

number of standard dynamics including periodic 

oscillations, stable fixed points, and excitability. Third, 

the FHN has been used as a simple model for both 

neurons and cardiac tissue, making it relevant to 

biomedical systems. Our main approach consists of 

observing the activation-excursion process of the 

stochastic FHN equations. We will do this for both the 

monostable and for bistable system. In the latter case, the 

stochastic FHN allows us to investigate the improvement 

of performance than the old one (determenistic FHN). 

The Fitzhugh-Nagumo [5] equations are a set of 

simple equations which exhibit the qualitative behaviour 

observed in neurons, namely: quiescence, excitability 

and periodic behaviour. The form we will use here 
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where De and Di are diffusion coefficients taken to be 

nonnegative for the variables u and v respectively, the 

parameter  is a positive small constant ( )10 <<< , 

and f(u,v) and g(u,v) are reaction terms taking the forms: 
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f(u,v) is a cubic function and assumed to be smooth 

enough. Parameters a and b are positive constants. 
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Figure 1. (a) Trajectories of determininstic FHN 

nullclines in the phase plane. The three nullclines 

depicted are ( ) 0=vuf , , ( ) 0=vug , with 2=b and 

( ) 0=vug , with 10=b . The steady state A and C are 

stable; whereas B is unstable. Arrows show the set of 

solutions ( )vu, trace when the system escapes from 

stable point. (b) The log-scaled of temporal response of 

two steady state solutions of u component where intial 

conditions are set different.  Setting b=2, the system 

turns to monostable system showing two intial conditions 

converge at the single steady state A. (c) Otherwise 

setting b=10, the system is to be bistable system where 

each initial condition goes toward either of two steady 

state A or C. The parameters used here 

are 250.=a , 4
10= , 2=b or 10=b . 

 

The analysis of the deterministic FHN model 

has shown that depending on the level of stimulation 

there exist three regimes—an excitable, a bistable, and 

an oscillating one. In the excitable state, the system 

stabilizes at a resting state. Small displacements from 

this state are followed by a rapid return; large ones evoke 

a different response (the action potential) before the 

system returns back to rest. In the oscillating regime, the 

FHN model displays periodic oscillations corresponding 

to a limit cycle in its phase space. Finally, the bistable 

region corresponds to the transition between one stable 

point to another. In the bistable region, the FHN either 

switches to a resting state A or C depending on the initial 

condition (see Fig. 1).  When the system is monostable, 

it describes a uniform stable steady state. The large phase 

difference between two sets of solutions generates an 

impulse at their boundary. This implies that it is 

applicable to edge enhancer. Whereas if the model is 

bistable, the set of diffusion-less differential equations in 

Eqs. (2.1) seperates the initial conditions into two 

different stable steady state where the two nullclines are 

crossing. This phenomenon is useful for segmentation. 

 

Stochastic Excitable FHN As Edge 

Enhancher  

 

We propose the representation of the stochastic FHN 

model is given by 
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where f(u,v) and g(u,v) are reaction terms as defined in 

Eqs (2.2). The one dimensional version variables ( )txu ,  

and ( )txv ,  are an activator and an inhibitor variable, 

respectively. ( )+= xAxs cos)(
0

 is a periodic signal 

and ( )txD ,2  is a white Gaussian noise with 

intensity D.  

In Fig. 3b, however while the contrast is very 

poor (SNR=10dB), deterministic FHN is not a 

sophisticated tool to make the edges isolated since some 

unimportant edges are generated.  Edges detected by 

coherence FHN look much better. The edges are partly 

localized since one pulse in between is preserved (see 

Fig. 3c). This result is due to the fact that the firing 

process seems not strong enough to perturb the v 

nullcline for eliminating the pulse. An approach to cope 

with this problem is adding both noise and a weak 

periodic signal instead of gaussian noise alone to evoke 

firing. The result in Fig. 3d indicates that the edge 

location could be identified by the use of the proposed 

stochastic FHN. 

In order to evaluate their generalization ability, 

we applied the edge enhancers/detectors to noisy image 

shown in Fig. 4a. Fig. 4b shows the ideal edges made 

from an original noiseless image by application of the 

canny detector. The well-known Canny’s operator is 

based on three criteria: good detection, localization, and 

the uniqueness of the response per edge. They are the 
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main reason why the resulting edges from noisless image 

considered as ideal edges. In the edges enhanced by 

Canny and Sobel Filter from noisy image can be seen in 

Fig 4c and 6d respectively, the edges contain much noise 

and appear discontinuous. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 (a) Nullclines of the FHN system (thin solid 

lines) and a deterministic trajectory (D = 0; s(x)  0) in 

the phase plane. The inset shows the time evolution of 

the u variable. (b) A stochastic realization for D = 0.03, 

s(x)  0. Noise-driven excursions through the phase 

plane imply a spike train in the variable u(t), resembling 

the spontaneous electric activity of a neuron. For both 

panels b=2, a=0.25, 0001.0=  and diffusion-less of 

Eq. (3.1) are utilized. (c) Illustration of threshold 

crossing mechanishm to evoke firing in FHN system. 

The top trace shows the sum of random and periodic 

terms; the horizontal line indicates the fixed activation 

threshold. The middle trace shows, for comparison, the 

periodic part of the input (s(x)). Each time the total 

input crosses the threshold on the way up, a unit pulse 

is generated in the output  (lower trace). 

 

In the edges enhanced by deterministic FHN, 

the noise is enhanced by mistake forming small spikes or 

artifacts causing the edges could not be completely 

identified. In contrast, in the edges enhanced by the 

stochastic FHN, there is less noise at edges. The 

enhanced edges are continuous and accurately localized. 

It is qualitatively or visually even better than those edges 

of noiseless image yielded by Canny detector. As 

predicted, this result shows the performance of edge 

detection is higher than that of some edge detectors. This 

attempt is aimed to prove that the cooperative 

phenomenon of noise and periodic signal is useful for 

extracting 2D edges. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. The numerical proof of periodic threshold 

causing the higher probability of the monostable system 

to fire yields the better edge of signal feating both 

deterministic FHN and CR (coherence resonance) FHN. 

Clock-wise: (a). Noisy signal (b). Edges enhanced by 

deterministic FHN (c). Edges detected by CR FHN (d). 

Edges enhanced by SR FHN. The utilized parameters 

here are similar to Figure 1b. Additional parameters:  
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Figure 4. (a). Noisy Artificial Image (b). Result of 

applying Canny Detector on noiseless image. (c). Canny 

detector for noisy image (d) Sobel Filter. 

(e).Deterministic FHN (f).Proposed Stochatis FHN. 
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Stochastic Bistable FHN for Image 

Segmentation 

 

The resulting general features of SR in 

two-stable system are similar to the single-state case. 

One difference is that now the optimal condition occurs 

when the system switches about twice per drive period 

rather than once. Such an effect is apparent even when 

the perturbation is weak enough not to appreciably affect 

the noise-induced switch process. However, the interplay 

of inherent noise and periodic driving mechanism results 

in a sharp enhancement of segmented signal/image. 

our approach turns out to achieve very 

appealing performance with respect to both segmentation 

and blurring quality criterion. Stochastic FHN are design 

to perform in noisy environment. It produces enhanced 

segments while simultaneously removes the noise (see 

Fig. 5 and Fig. 6). It paves the way to more reliable 

segmentation method and outperforms its counterparts.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The numerical proof of periodic threshold 

causing the higher probability of the bistable system to 

fire yields the better signal segmentation superior to both 

deterministic FHN and CR (coherence resonance) FHN. 

In this case, due to the SNR is given quite small, the 

amplitude of periodic signal must be set to be 

significantly large in order for evoking the system to fire. 

The cooperative phenomenon of both gaussian noise and 

periodic signal successfully vannish the unnecessary 

pulse(s) seperating the signal pretty good. The utilized 

parameters here are similar to Figure 1c. Additional 

parameters:  
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Figure 6. Separation of heteregenous objects from noisy 

background.. Clock-wise: (a) Syntethic 156x156 noisy 

image. The brightness values are uniformly distributed 

between 0 and 0.5 for the background, between 0 and 

0.75 for the triangle, circle, star, spiral and the cross. (b). 

Perona-Malik Anisotropic Diffusion. (c). Forward and 

Backward Diffusion. (d) Complex Diffusion (d). 

Deterministic FHN (Parameters used are similar to Fig 

10b). (e). Stochastic FHN (Parameters utilized are 

similar to Fig 5d). Note: (b) (c) and (d) obtained after 50 

iterations. 
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